Direct Matching Antennas in RF Energy Harvesting Systems: A Review

  • Vahid Honarvar
  • Farzad mohajeri
Keywords: RF Energy Harvesting (RFEH), Rectenna, elimination of matching network, non-50Ω antennas.

Abstract

A historical review of Radio Frequency Energy Harvesting (RFEH) Rectenna (Rectifier Antenna) Systems without a matching network is performed, with emphasis on the antenna part. As the antenna, matching network and rectifier are the main parts of the rectenna systems, the reasons behind the elimination of the matching network are presented and different special antennas suitable for direct matching to the rectifier, without using a matching network, are reviewed. Since the diode in the rectifier is a nonlinear element, its input impedance is changed with varying operating conditions such as input power, frequency and output load impedance of the rectifier. So, it is a challenge for researchers to match the antenna impedance directly to the rectifier in variable operational conditions.

References

[1] William C. Brown, "Rectenna Technology Program: Ultra-light 2.45 GHz rectenna 20 GHz rectenna," Report Number NAS 1.26:179558, NASA 1987.
[2] M. Fantuzzi, "Design and Modelling of Wireless Power Transfer and Energy Harvesting Systems," PhD Dissertation, University of Bologna, Italy, 2018.
[3] S. Selvan, M. Zaman, R. Gobbi and H. Y. Wong, "Recent advances in the design and development of radio frequency-based energy harvester for powering wireless sensors: a review," Journal of Electromagnetic Waves and Applications, 32:16, pp. 2110-2134, 2018, doi: 10.1080/09205071.2018.1497548.
[4] B. Sri HarshaVardhan, R. Jagadeesh Chandra Prasad and S. Natarajamani, "Design of Rectifier at ISM Band for RF Energy Harvesting of Low Powers," in 2019 International Conference on Communication and Signal Processing (ICCSP), 2019, pp. 0282-0285, doi: 10.1109/ICCSP.2019.8697979.
[5] [5] M. Prauzek, J. Konecny, M. Borova, K. Janosova, J. Hlavica, and P. Musilek, "Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review," Sensors, vol. 18, no. 8, p. 2446, Jul. 2018, doi: 10.3390/s18082446.
[6] V. Kuhn, C. Lahuec, F. Seguin and C. Person, "A Multi-Band Stacked RF Energy Harvester With RF-to-DC Efficiency Up to 84%," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 5, pp. 1768-1778, May 2015, doi: 10.1109/TMTT.2015.2416233.
[7] U. Muncuk, K. Alemdar, J. D. Sarode and K. R. Chowdhury, "Multiband Ambient RF Energy Harvesting Circuit Design for Enabling Batteryless Sensors and IoT," IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2700-2714, Aug. 2018, doi: 10.1109/JIOT.2018.2813162.
[8] I. Ramos and Z. Popović, "A compact 2.45 GHz, low power wireless energy harvester with a reflector-backed folded dipole rectenna," in 2015 IEEE Wireless Power Transfer Conference (WPTC), 2015, pp. 1-3, doi: 10.1109/WPT.2015.7140159.
[9] R. Scheeler, S. Korhummel and Z. Popovic, "A Dual-Frequency Ultralow-Power Efficient 0.5-g Rectenna," IEEE Microwave Magazine, vol. 15, no. 1, pp. 109-114, Jan.-Feb. 2014, doi: 10.1109/MMM.2013.2288836.
[10] C. Song, Y. Huang, J. Zhou, J. Zhang, S. Yuan and P. Carter, "A High-Efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting," IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3486-3495, Aug. 2015, doi: 10.1109/TAP.2015.2431719.
[11] J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane and Z. B. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 1014-1024, March 2004, doi: 10.1109/TMTT.2004.823585.
[12] C. Mikeka, and H. Arai, "Design Issues in Radio Frequency Energy Harvesting System," Sustainable Energy Harvesting Technologies - Past, Present and Future, London, United Kingdom: IntechOpen, 2011 [Online]. Available: https://www.intechopen.com/chapters/25376 doi: 10.5772/25348.
[13] N. Shariati, "Sensitive ambient RF Energy harvesting," Ph.D dissertation, School of Engineering, RMIT University, Melbourne, Australia, 2015, Available Online: https://researchrepository.rmit.edu.au/esploro/outputs/9921864064801341.
[14] K. Niotaki, A. Georgiadis, A. Collado and J. S. Vardakas, "Dual-Band Resistance Compression Networks for Improved Rectifier Performance," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3512-3521, Dec. 2014, doi: 10.1109/TMTT.2014.2364830.
[15] C. Felini, M. Merenda and F. G. Della Corte, "Dynamic impedance matching network for RF energy harvesting systems," in 2014 IEEE RFID Technology and Applications Conference (RFID-TA), 2014, pp. 86-90, doi: 10.1109/RFID-TA.2014.6934206.
[16] C. Song, Y. Huang, P. Carter, J. Zhou, S. Yuan, Q. Xu and M. Kod, "A Novel Six-Band Dual CP Rectenna Using Improved Impedance Matching Technique for Ambient RF Energy Harvesting," IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 3160-3171, July 2016, doi: 10.1109/TAP.2016.2565697.
[17] Y. E. Sun, N. M. Mahyuddin, "A 1.8 GHz and 2.4 GHz Multiplier Design for RF Energy Harvester in Wireless Sensor Network," in 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, Lecture Notes in Electrical Engineering, vol. 398, 2017, Springer, Singapore, doi: 10.1007/978-981-10-1721-6_54.
[18] Z. Hameed, K. Moez, "Design of impedance matching circuits for RF energy harvesting systems," Microelectronics Journal, vol. 62, pp. 49-56, 2017, doi: 10.1016/j.mejo.2017.02.004.
[19] S. Shen and R. D. Murch, "Impedance Matching for Compact Multiple Antenna Systems in Random RF Fields," IEEE Transactions on Antennas and Propagation, vol. 64, no. 2, pp. 820-825, Feb. 2016, doi: 10.1109/TAP.2015.2510006.
[20] S. Chandravanshi, S. S. Sarma and M. J. Akhtar, "Design of Triple Band Differential Rectenna for RF Energy Harvesting," IEEE Transactions on Antennas and Propagation, vol. 66, no. 6, pp. 2716-2726, June 2018, doi: 10.1109/TAP.2018.2819699.
[21] J. Liu and X. Y. Zhang, "Compact Triple-Band Rectifier for Ambient RF Energy Harvesting Application," IEEE Access, vol. 6, pp. 19018-19024, 2018, doi: 10.1109/ACCESS.2018.2820143.
[22] C. Song, Y. Huang, J. Zhou and P. Carter, "Recent advances in broadband rectennas for wireless power transfer and ambient RF energy harvesting," in 2017 11th European Conference on Antennas and Propagation (EUCAP), 2017, pp. 341-345, doi: 10.23919/EuCAP.2017.7928536.
[23] T. Karataev, A. Bekasiewicz and S. Koziel, "A novel dual-band rectifier circuit with enhanced bandwidth for RF energy harvesting applications," in 2018 22nd International Microwave and Radar Conference (MIKON), 2018, pp. 161-164, doi: 10.23919/MIKON.2018.8405165.
[24] Y. Han, O. Leitermann, D. A. Jackson, J. M. Rivas and D. J. Perreault, "Resistance Compression Networks for Radio-Frequency Power Conversion," IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 41-53, Jan. 2007, doi: 10.1109/TPEL.2006.886601.
[25] Z. -X. Du and X. Y. Zhang, "High-Efficiency Single- and Dual-Band Rectifiers Using a Complex Impedance Compression Network for Wireless Power Transfer," IEEE Transactions on Industrial Electronics, vol. 65, no. 6, pp. 5012-5022, June 2018, doi: 10.1109/TIE.2017.2772203.
[26] C. Song, Y. Huang, J. Zhou and P. Carter, "Improved Ultrawideband Rectennas Using Hybrid Resistance Compression Technique," IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 2057-2062, April 2017, doi: 10.1109/TAP.2017.2670359.
[27] S. Agrawal, M. S. Parihar, P. N. Kondekar, "A quad-band antenna for multi-band radio frequency energy harvesting circuit," AEU - International Journal of Electronics and Communications, vol. 85, pp. 99-107, Feb. 2018, doi: 10.1016/j.aeue.2017.12.035.
[28] H.J. Visser, R. Vullers, "Far-field RF energy transfer and harvesting," Ch. 15 of the Book: Micro Energy Harvesting, John Wiley & Sons, May 2015, pp. 321-344, ISBN (Electronic): 9783527672943.
[29] Y. S. Chen and C. W. Chiu, "Maximum Achievable Power Conversion Efficiency Obtained Through an Optimized Rectenna Structure for RF Energy Harvesting," IEEE Transactions on Antennas and Propagation, vol. 65, no. 5, pp. 2305-2317, May 2017, doi: 10.1109/TAP.2017.2682228.
[30] J. May, "Principles, Applications and Selection of Receiving Diodes," Rev. V1, AG314 Application Note, M/A-COM Technology Solutions.
[31] A. M. H. Almohaimeed, "Efficient Harvester with Wide Dynamic Input Power Range for 900 MHz Wireless Power Transfer Applications," Ph.D dissertation, University of Ottawa, ON, Canada, 2018, Available Online: https://ruor.uottawa.ca/bitstream/10393/38070/3/Almohaimeed_Abdullah_Mohammed_H_2018_thesis.pdf
[32] Q. Zhang, J. -H. Ou, Z. Wu and H. -Z. Tan, "Novel Microwave Rectifier Optimizing Method and Its Application in Rectenna Designs," IEEE Access, vol. 6, pp. 53557-53565, 2018, doi: 10.1109/ACCESS.2018.2871087.
[33] S. Keyrouz, "Practical rectennas: far-field RF power harvesting and transport," Ph.D dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands, 2014, doi: 10.6100/IR774472, Available Online: https://research.tue.nl/files/3922928/774472.pdf.
[34] S. Keyrouz, H. J. Visser and A. G. Tijhuis, "Rectifier analysis for Radio Frequency energy harvesting and Power Transport," in 2012 42nd European Microwave Conference, 2012, pp. 428-431, doi: 10.23919/EuMC.2012.6459081.
[35] R. G. Harrison and X. Le Polozec, "Nonsquarelaw behavior of diode detectors analyzed by the Ritz-Galerkin method," IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 5, pp. 840-846, May 1994, doi: 10.1109/22.293533.
[36] J. A. Hagerty, N. D. Lopez, B. Popovic and Z. Popovic, "Broadband Rectenna Arrays for Randomly Polarized Incident Waves," in 2000 30th European Microwave Conference, 2000, pp. 1-4, doi: 10.1109/EUMA.2000.338757.
[37] G. Marrocco, "The art of UHF RFID antenna design: impedance-matching and size-reduction techniques," IEEE Antennas and Propagation Magazine, vol. 50, no. 1, pp. 66-79, Feb. 2008, doi: 10.1109/MAP.2008.4494504.
[38] N. Michishita and Y. Yamada, "A novel impedance matching structure for a dielectric loaded 0.05 wavelength small meander line antenna," in 2006 IEEE Antennas and Propagation Society International Symposium, 2006, pp. 1347-1350, doi: 10.1109/APS.2006.1710795.
[39] Wonkyu Choi, H. W. Son, Chansoo Shin, Ji-Hoon Bae and Gilyoung Choi, "RFID tag antenna with a meandered dipole and inductively coupled feed," in 2006 IEEE Antennas and Propagation Society International Symposium, 2006, pp. 619-622, doi: 10.1109/APS.2006.1710600.
[40] K. V. S. Rao, P. V. Nikitin and S. F. Lam, "Antenna design for UHF RFID tags: a review and a practical application," IEEE Transactions on Antennas and Propagation, vol. 53, no. 12, pp. 3870-3876, Dec. 2005, doi: 10.1109/TAP.2005.859919.
[41] A. Toccafondi and P. Braconi, "Compact load-bars meander line antenna for UHF RFID transponder," in 2006 First European Conference on Antennas and Propagation, 2006, pp. 1-4, doi: 10.1109/EUCAP.2006.4584839.
[42] Chihyun Cho, Hosung Choo and Ikmo Park, "Design of Novel RFID Tag Antennas for Metallic Objects," in 2006 IEEE Antennas and Propagation Society International Symposium, 2006, pp. 3245-3248, doi: 10.1109/APS.2006.1711303.
[43] Yuri Tikhov, Yongjin Kim and Young-Hoon Min, "Compact low cost antenna for passive RFID transponder," in 2006 IEEE Antennas and Propagation Society International Symposium, 2006, pp. 1015-1018, doi: 10.1109/APS.2006.1710705.
[44] Byunggil Yu, Sung-Joo Kim, Byungwoon Jung, F. J. Harackiewicz, Myun-Joo Park and Byungje Lee, "Balanced RFID Tag Antenna Mountable on Metallic Plates," in 2006 IEEE Antennas and Propagation Society International Symposium, 2006, pp. 3237-3240, doi: 10.1109/APS.2006.1711301.
[45] A. H. Rida, L. Yang, S. S. Basat, A. Ferrer-Vidal, S. Nikolaou and M. M. Tentzeris, "Design, Development and Integration of Novel Antennas for Miniaturized UHF RFID Tags," IEEE Transactions on Antennas and Propagation, vol. 57, no. 11, pp. 3450-3457, Nov. 2009, doi: 10.1109/TAP.2009.2027347.
[46] J. Kim, I. Y. Oh, J. C. Kim, D. Kim, T. W. Koo and J. G. Yook, "Design of a meandered slot antenna for UHF RFID applications," in 2010 IEEE Antennas and Propagation Society International Symposium, 2010, pp. 1-4, doi: 10.1109/APS.2010.5561182.
[47] J. A. G. Akkermans, M. C. van Beurden, G. J. N. Doodeman and H. J. Visser, "Analytical models for low-power rectenna design," IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 187-190, 2005, doi: 10.1109/LAWP.2005.850798.
[48] H.J. Visser, "Approximate Antenna Analysis for CAD," Ch. 5, John Wiley & Sons, March 2009, ISBN (Electronic): 9780470986387, URL: https://ieeexplore.ieee.org/servlet/opac?bknumber=8039953.
[49] H. J. Visser and R. J. M. Vullers, "Time efficient method for automated antenna design for wireless energy harvesting," in 2010 Loughborough Antennas & Propagation Conference, 2010, pp. 433-436, doi: 10.1109/LAPC.2010.5666213.
[50] O. Kazanc, C. Dehollain and F. Maloberti, "Impedance-matched sensor-tag antenna design using genetic algorithm optimization," in 2011 5th International Symposium on Medical Information and Communication Technology, 2011, pp. 61-64, doi: 10.1109/ISMICT.2011.5759797.
[51] N. Zhu, R. W. Ziolkowski, and H. Xin, "A metamaterial-inspired, electrically small rectenna for high-efficiency, low power harvesting and scavenging at the global positioning system L1 frequency," Applied Physics Letters, vol. 99, pp. 114101, 2011, doi: 10.1063/1.3637045.
[52] E. Falkenstein, M. Roberg and Z. Popovic, "Low-Power Wireless Power Delivery," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 7, pp. 2277-2286, July 2012, doi: 10.1109/TMTT.2012.2193594.
[53] H. Sun, Y. -x. Guo, M. He and Z. Zhong, "Design of a High-Efficiency 2.45-GHz Rectenna for Low-Input-Power Energy Harvesting," IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 929-932, 2012, doi: 10.1109/LAWP.2012.2212232.
[54] T. Choi and S.-M. Han, "Compact Rectenna System Design Using a Direct Impedance Matching Method," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 24, no. 3. Korean Institute of Electromagnetic Engineering and Science, pp. 286–291, 31-Mar-2013, doi: 10.5515/KJKIEES.2013.24.3.286.
[55] M. Stoopman, S. Keyrouz, H. J. Visser, K. Philips and W. A. Serdijn, "Co-Design of a CMOS Rectifier and Small Loop Antenna for Highly Sensitive RF Energy Harvesters," IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 622-634, March 2014, doi: 10.1109/JSSC.2014.2302793.
[56] S. Korhummel, D. G. Kuester and Z. Popović, "A harmonically-terminated two-gram low-power rectenna on a flexible substrate," in 2013 IEEE Wireless Power Transfer (WPT), 2013, pp. 119-122, doi: 10.1109/WPT.2013.6556897.
[57] H. J. Visser, S. Keyrouz, and A. B. Smolders, "Optimized rectenna design," Wireless Power Transfer, vol. 2, no. 1, pp. 44–50, 2015, doi: 10.1017/wpt.2014.14.
[58] M. Arrawatia, M. S. Baghini and G. Kumar, "Broadband Bent Triangular Omnidirectional Antenna for RF Energy Harvesting," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 36-39, 2016, doi: 10.1109/LAWP.2015.2427232.
[59] T. S. Almoneef, H. Sun and O. M. Ramahi, "A 3-D Folded Dipole Antenna Array for Far-Field Electromagnetic Energy Transfer," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1406-1409, 2016, doi: 10.1109/LAWP.2015.2511183.
[60] A. Okba, A. Takacs, H. Aubert, S. Charlot, P. F. Calmon, "Multiband rectenna for microwave applications," Comptes Rendus Physique, vol. 18, no. 2, pp. 107-117, 2017, doi: 10.1016/j.crhy.2016.12.002.
[61] M. Arrawatia, M. S. Baghini and G. Kumar, "Broadband RF energy harvesting system covering CDMA, GSM900, GSM1800, 3G bands with inherent impedance matching," in 2016 IEEE MTT-S International Microwave Symposium (IMS), 2016, pp. 1-3, doi: 10.1109/MWSYM.2016.7540144.
[62] C. Song, Y. Huang, J. Zhou, P. Carter, S. Yuan, Q. Xu, and Z. Fei, "Matching Network Elimination in Broadband Rectennas for High-Efficiency Wireless Power Transfer and Energy Harvesting," IEEE Transactions on Industrial Electronics, vol. 64, no. 5, pp. 3950-3961, May 2017, doi: 10.1109/TIE.2016.2645505.
[63] Y. S. Chen and C. W. Chiu, "Insertion Loss Characterization of Impedance Matching Networks for Low-Power Rectennas," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 9, pp. 1632-1641, Sept. 2018, doi: 10.1109/TCPMT.2018.2864183.
[64] A. Lopez-Yela and D. Segovia-Vargas, "A triple-band bow-tie rectenna for RF energy harvesting without matching network," in 2017 IEEE Wireless Power Transfer Conference (WPTC), 2017, pp. 1-4, doi: 10.1109/WPT.2017.7953809.
[65] A. Z. Ashoor, T. S. Almoneef and O. M. Ramahi, "A Planar Dipole Array Surface for Electromagnetic Energy Harvesting and Wireless Power Transfer," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1553-1560, March 2018, doi: 10.1109/TMTT.2017.2750163.
[66] P. Pereira, R. C. M. Pimenta, R. Adriano, G. L. F. Brandão and Ú. C. Resende, "Antenna impedance correction for low power energy harvesting devices," in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2017, pp. 1-5, doi: 10.1109/IMOC.2017.8121124.
[67] F. Erkmen, T. S. Almoneef and O. M. Ramahi, "Scalable Electromagnetic Energy Harvesting Using Frequency-Selective Surfaces," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 5, pp. 2433-2441, May 2018, doi: 10.1109/TMTT.2018.2804956.
[68] C. Song, Y. Huang, P. Carter, J. Zhou, S. D. Joseph and G. Li, "Novel Compact and Broadband Frequency-Selectable Rectennas for a Wide Input-Power and Load Impedance Range," IEEE Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3306-3316, July 2018, doi: 10.1109/TAP.2018.2826568.
[69] T. S. Almoneef, F. Erkmen, M. A. Alotaibi and O. M. Ramahi, "A New Approach to Microwave Rectennas Using Tightly Coupled Antennas," IEEE Transactions on Antennas and Propagation, vol. 66, no. 4, pp. 1714-1724, April 2018, doi: 10.1109/TAP.2018.2806398.
[70] C. Song, A. López-Yela, Y. Huang, D. Segovia-Vargas, Y. Zhuang, Y. Wang and J. Zhou, "A Novel Quartz Clock with Integrated Wireless Energy Harvesting and Sensing Functions," IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 4042-4053, May 2019, doi: 10.1109/TIE.2018.2844848.
[71] A. Z. Ashoor and O. M. Ramahi, "Polarization-Independent Cross-Dipole Energy Harvesting Surface," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 3, pp. 1130-1137, March 2019, doi: 10.1109/TMTT.2018.2885754.
[72] D. Sabhan, V. J. Nesamoni, and J. Thangappan, "A wide-beam, circularly polarized, three-staged, stepped-impedance, spiral antenna for direct matching to rectifier circuits," Review of Scientific Instruments, vol.90, no. 5, pp. 054704, May 2019, doi: 10.1063/1.5088572.
[73] A. Hirono, N. Sakai and K. Itoh, "High efficient 2.4GHz band high power rectenna with the direct matching topology," in 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019, pp. 1268-1270, doi: 10.1109/APMC46564.2019.9038304.
[74] A. Karampatea, K. Siakavara, "Hybrid rectennas of printed dipole type on Double Negative Dielectric Media for powering sensors via RF ambient energy harvesting," AEU - International Journal of Electronics and Communications, vol. 108, pp. 242-250, Aug. 2019, doi: 10.1016/j.aeue.2019.06.023.
[75] W. Lin and R. W. Ziolkowski, "Electrically Small Huygens CP Rectenna with a Driven Loop Element Maximizes Its Wireless Power Transfer Efficiency," IEEE Transactions on Antennas and Propagation, vol. 68, no. 1, pp. 540-545, Jan. 2020, doi: 10.1109/TAP.2019.2935784.
[76] L. Lazović, B. Jokanovic, V. Rubežić and A. Jovanović, "Printed Ultra-Wideband Cardioid Monopole Antenna for Energy Harvesting Application," in 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), 2019, pp. 134-137, doi: 10.1109/TELSIKS46999.2019.9002362.
[77] L. Guo, X. Gu, P. Chu, S. Hemour and K. Wu, "Collaboratively Harvesting Ambient Radiofrequency and Thermal Energy," IEEE Transactions on Industrial Electronics, vol. 67, no. 5, pp. 3736-3746, May 2020, doi: 10.1109/TIE.2019.2914627.
[78] M. Wagih, A. S. Weddell and S. Beeby, "High-Efficiency Sub-1 GHz Flexible Compact Rectenna based on Parametric Antenna-Rectifier Co-Design," in 2020 IEEE/MTT-S International Microwave Symposium (IMS), 2020, pp. 1066-1069, doi: 10.1109/IMS30576.2020.9223796.
[79] M. Wagih, A. S. Weddell and S. Beeby, "Meshed High-Impedance Matching Network-Free Rectenna Optimized for Additive Manufacturing," IEEE Open Journal of Antennas and Propagation, vol. 1, pp. 615-626, 2020, doi: 10.1109/OJAP.2020.3038001.
[80] T. S. Almoneef, "Design of a Rectenna Array without a Matching Network," IEEE Access, vol. 8, pp. 109071-109079, 2020, doi: 10.1109/ACCESS.2020.3001903.
[81] R. Čvorović, L. Lazović, V. Rubežić and A. Jovanović, "Printed asymmetrical Sierpinski slot antenna for energy harvesting application," in 2020 24th International Conference on Information Technology (IT), 2020, pp. 1-4, doi: 10.1109/IT48810.2020.9070358.
[82] R. M. Yaseen, D. K. Naji, and A. M. Shakir, "Optimization Design Methodology of Broadband or Multiband Antenna for RF Energy Harvesting Applications," Progress in Electromagnetics Research B, vol. 93, pp. 169-194, 2021, doi:10.2528/PIERB21070104.
Published
2022-09-17
How to Cite
Honarvar, V., & mohajeri, F. (2022). Direct Matching Antennas in RF Energy Harvesting Systems: A Review. Majlesi Journal of Electrical Engineering. Retrieved from http://mjee.iaumajlesi.ac.ir/index/index.php/ee/article/view/4876
Section
Articles