Comparison of chromatic dispersion of circular and hexagonal photonic crystal fibers with chloroform-core

  • Tran Tran Bao Le Department of Physics, Vinh University
  • Oanh Thi Chuyen Truong Nguyen Quang Dieu High School for the Gifted
  • Thuy Thi Nguyen University of Education, Hue University
  • Lanh Van Chu Department of Physics, Vinh University
Keywords: Photonic crystal fibers, Chloroform, Dispersion characteristic, Circular lattice, Hexagonal lattice

Abstract

In this paper, we compare dispersion characteristics of chloroform-core photonic crystal fibers (PCFs) with circular lattice and hexagonal lattice in the case of different air hole diameters. By varying lattice constant Ʌ and filling factor in the first ring d1/Ʌ, we can easily control chromatic dispersion and achieve three optimal structures for the circular lattice of fibers #CF1 (Ʌ = 1.0 µm, d1/Ʌ = 0.65), #CF2 (Ʌ = 1.0 µm, d1/Ʌ = 0.7), and #CF3 (Ʌ = 2.0 µm, d1/Ʌ = 0.3) and two optimal structures for the hexagonal lattice of fibers #HF1 (Ʌ = 1.0 µm, d1/Ʌ = 0.5), #HF2 (Ʌ = 2.0 µm, d1/Ʌ = 0.3). At the same structural parameter (Ʌ = 2.0 µm, d1/Ʌ = 0.3) and the corresponding pumping wavelength, the circular structure has a dispersion smaller by 5.598 ps/mn/km than the hexagonal lattice. #CF1 has all-normal dispersion with the peak of the dispersion curve asymptote to the zero-dispersion curve which is very suitable for coherent supercontinuum generation (SCG). The #HF1 structure has a near-zero flat anomalous dispersion in the wide wavelength range from 1.1 µm to 1.4 µm. Our results will be an important premise in choosing a PCF structure to study SCG.

References

[1] J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding, ” Opt. Lett., vol. 21, pp. 1547-1549, Oct. 1996.
[2] R. Buczyński, “Photonic crystal fibers, ” Acta Phys. Pol. Series A, vol. 106, pp. 141-168, Aug. 2004.
[3] V. T. M. Ngoc, L. T. B. Tran, D. V. Trong, L. X. Bao, T. N. Thao, V. D. Long, T. V. Thanh, T. T. C. Oanh, H. T. A. Thu, N. T. Thuy, T. Q. Vu, and C. V. Lanh, “Optimal structure of photonic crystal fiber with infiltrated benzen core for application supercontinuum generation,” in Proc. of the 7th Academic Conf. on Natural Science for Young Scientists, Master and PhD. Students from Asean Countries, pp. 397-405, 2021.
[4] P. Kumar and A. Mishra, “PCF structure with circular air hole and square lattice and its high birefringence and lower zero dispersion behavior, ” Int. Journal of Electronics Communication and Computer Engineering, vol. 4, pp. 192-195, Jan. 2013.
[5] C. V. Lanh, H. V. Thuy Hoang, C. L. Van, K. Borzycki, D. X. Khoa, T. Q. Vu, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation, ” Las. Phys., vol. 29, 075107 (9pp), May 2019.
[6] C. V. Lanh, H. V. Thuy Hoang, C. L. Van, K. Borzycki, D. X. Khoa, T. Q. Vu, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation, ” Las. Phys., vol. 30, 035105 (9pp), Feb. 2020.
[7] N. T. Thuy, H. T. Duc, L. T. B. Tran, D. V. Trong, and C. V. Lanh, “Optimization of optical properties of toluene-core photonic crystal fibers with circle lattice for supercontinuum generation, ” J. Opt., Jan. 2022.
[8] C. V. Lanh, N. T. Thuy, H. T. Duc, L. T. B. Tran, V. T. M. Ngoc, D. V. Trong, L. C. Trung, H. D. Quang, and D. Q. Khoa, “Comparison of supercontinuum spectrum generating by hollow core PCFs filled with nitrobenzene with different lattice types, ” Opt. Quant. Electron., vol. 54, 300 (17pp), Apr. 2022.
[9] C. V. Lanh, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, D. X. Khoa, C. L. Van, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibres with core filled with toluene, ” J. Opt., vol. 19, 125604 (9pp), Nov. 2017.
[10] D. T. Linh, P. N. Huyen, N. Q. Vu, N. L. Huong, T. Q. Vu, D. X. Khoa, and C. V. Lanh, “Optimization of characteristic parameters of photonic crystal fiber with core infiltrated by carbon disulfide liquid for supercontinuum generation,” in Proc. the 5th Conf. on Advances in Appl. Engineering Phys. – CAEP V, pp. 206-211, 2018.
[11] A. Mu’iz Maidi, Pg E. Abas, Pg I. Petra, S. Kaijage, N. Zou, and F. Begum, “Theoretical considerations of photonic crystal fiber with all uniform-sized air holes for liquid sensing, ” Photonics, vol. 8, 249 (14pp), Jun. 2021.
[12] L. V. Hieu, H. V. Thuy, L. C. Trung, H. D. Quang, N. T. Hue, V. T. M. Ngoc, M. Klimczak, R. Buczyński, and R. Kasztelanic, “Silica-based photonic crystal fiber infiltrated with 1,2-dibromoethane for supercontinuum generation, ” Appl. Opt., vol. 60, pp. 7268-7278, Aug. 2021.
[13] D. T. Nhat, N. M. Linh, D. L. Chi, N. T. Trang, T. Q. Vu, D. X. Khoa, and C. V. Lanh, “Photonic crystal fiber with core infiltrated by carbon tetrachloride for nonlinear effects generation,” in Proc. of the 5th Conf. on Advances in Appl. Engineering Phys. – CAEP V, pp. 200-205, 2018.
[14] C. Wanga, W. Lia, N. Lia, and W. Wang, “Numerical simulation of coherent visible-to-near-infrared supercontinuum generation in the CHCl3-filled photonic crystal fiber with 1.06 μm pump pulses, ” Opt. Las. Tec., vol. 88, pp. 215-221, Feb. 2017.
[15] P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids, ” Phys. Rev. A, vol. 20, pp. 2170-2187, Nov. 1979.
[16] S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response, ” Appl. Phys. B, vol. 117, pp. 803-816, Apr. 2014.
Published
2022-07-16
How to Cite
Le, T., Truong, O., Nguyen, T., & Chu, L. (2022). Comparison of chromatic dispersion of circular and hexagonal photonic crystal fibers with chloroform-core. Majlesi Journal of Electrical Engineering, 16(3). Retrieved from http://mjee.iaumajlesi.ac.ir/index/index.php/ee/article/view/4760
Section
Articles