Optical Signal Transmission through Masked Aperture to Extend the Depth of Focus in Optical Coherence Tomography

  • Pawan K. Tiwari Department of Physics, Birla Institute of Technology Mesra, Ranchi, India.
  • K. P. S. Parmar Department of Physics, University of Petroleum and Energy Studies, Dehradun, India.
  • Suman Pandey Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea.
Keywords: Optical Transfer Function, Geometrical Coordinate, Spot Size, Optical Coordinate, Depth of Focus, Obscuration, Pupil Function

Abstract

Optical Coherence Tomography (OCT) imaging technique has emerged as a non- or minimally invasive modality in the clinical pathogenesis such as deep tissue examining and optical biopsy etc. The OCT imaging increases the Depth of Focus (DoF) by devising mechanisms to increase an Optical Transfer Function (OTF) of the imaging system. This is achieved through an apodization technique on the surface of lens in conjugation with the femtosecond Bessel-type laser beam. An investigation on postulation of OTF through a masked aperture, or specifically a micro-dot is investigated to measure variations of intensity profile at the optical coordinates in the radial as well as axial directions. The intensity variations in the radial and axial coordinates are calibrated to obtain the information, which significantly helps in devising of OCT imaging system. A theoretical investigation of OTF matching the experimental relationship between spot size and DoF in response to obscuration ratio is presented in this paper. This mathematical approach could be applied to different types of masking functions by meticulously exploring the parameters of optical coordinates.

References

[1] J. T. Yap, J. P.J. Carney, N.C. Hall, D. W. Townsend, “Image-guided cancer therapy using PET/CT,” Cancer J., Vol. 10, pp. 221-33, Jul. 2004.
[2] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, “Optical coherence tomography”, Science, Vol. 254, pp. 1178-1181, Nov. 1991
[3] E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. S. Jalmes, “Full-field optical coherence microscopy,” Opt. Lett., Vol. 23, pp. 244–246, Feb. 1998.
[4] M. Adhi, J. S. Juker, “Optical coherence tomography-current and future applications,” Cur. Opin. Ophthalmol., Vol. 24, pp. 213-221, May 2013.
[5] O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, P. Varlet, “Imaging of tumorous and non-tumorous human brain tissues with full-field optical coherence tomography,” NeuroImage Clin., Vol. 2, pp. 549-557, Feb. 2013.
[6] W. Jung, S. A. Boppart, “Optical coherence tomography for rapid tissue screening and directed histological sectioning,” Anal. Cell Pathol. (Amst.), Vol. 35, pp. 129-143, Jan. 2012.
[7] Y. Zhao, W. J. Eldridge, J. R. Maher, S. Kim, M. Crose, M. Ibrahim, H. Levinson, A. Wax, “Dual-axis optical coherence tomography for deep tissue imaging,” Opt. Lett., Vol. 42, pp. 2302-2305, Jun 2017.
[8] B.Unterhuber, B. Povazay, H. Hermann, “In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid,” Opt. Express., Vol. 13, pp. 3252-3258, May 2005.
[9] H. Wang, G. Yuan, W. Tan, L. Shi, T. Chong, “Spot size and depth of focus in optical data storage system,”, Opt. Eng., Vol. 46, pp. 065201-1~3, Jun. 2007.
[10] Z. Zalevsky, “Extended depth of focus imaging: A review,” SPIE Rev., Vol. 1, pp. 018001-1~11, Jan. 2010.
[11] C. J. R. Sheppard, “Depth of field in optical microscopy,” J. Microsc., Vol. 149, pp. 73-75, Oct. 1987.
[12] J. H. Mcleod, “The axicon: A new type of optical element,” J. Opt. Soc. Am., Vol. 44, pp. 592-597, Aug. 1954.
[13] J. Dyson, “Circular and spiral diffraction gratings,” Proc.R. Soc.Lond A Math. Phys. Sci., Vol. 248, pp. 93-106, Oct. 1958.
[14] E. H. Linfoot, E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B, Vol. 66, pp. 145-149, Sept. 1952.
[15] H. F. Wang, F. Gan, “High focal depth with a pure phase-apodizer,” Appl. Opt., Vol. 40, pp. 5658-5662, Nov. 2001.
[16] E. R. Dowski Jr., W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt., Vol. 34, pp. 1859-1866, April 1995.
[17] D. McGloin, K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys., Vol. 46, pp. 15-28, Jan. 2005.
[18] G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett., Vol. 99, Nov. 2007.
[19] P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science, Vol. 324, pp. 229–232, April. 2009.
[20] B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S.-J. Ge, Y. Ming, V. Chigrinov, Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep., Vol. 5, pp. 17484-1~8, Dec. 2015.
[21] S. Ryu, C. Joo, “Design of binary phase filters for depth-of-focus extension via binarization of axisymmetric aberrations,” Opt. Express, Vol. 25, pp. 30312-30326, Nov. 2017.
[22] C. J. R. Sheppard, Z. S. Hegedus, “Axial behavior of pupil-plane filters”, J. Opt. Soc. Am. A, Vol. 5, pp. 643-647, Dec. 1987.
[23] C. J.R. Sheppard, Shalin Mehta, “Three-level filter for increased depth of focus and Bessel beam generation,” Opt. Express, Vol. 20, pp. 27212-27221, Nov. 2012
[24] H. F. A. Tschunko, “Imaging performance of annular aperture,” Appl. Opt., Vol. 13, pp. 1820-1853, Aug. 1974.
[25] J. E. Harvey, “Diffraction effects in grazing incidence x-ray telescope,” J. Xray Sci. Technol., Vol. 3, pp. 68-76, Oct. 1991.
Published
2020-12-01
How to Cite
Tiwari, P., Parmar, K. P. S., & Pandey, S. (2020). Optical Signal Transmission through Masked Aperture to Extend the Depth of Focus in Optical Coherence Tomography. Majlesi Journal of Electrical Engineering, 14(4), 93-96. https://doi.org/https://doi.org/10.29252/mjee.14.4.93
Section
Articles