Development of a Neutron Radiography System based on a 10 MeV Electron Linac

  • Jacob G Fantidis Department of Electrical Engineering-Department of Physics, International Hellenic University, Agios Loukas, 65404 Kavala, Greece.
  • G E Nicolaou Laboratory of Nuclear Technology, Department of Electrical and Computer Engineering, ‘Democritus’ University of Thrace, Xanthi, Greece.
Keywords: Neutron Radiography, MCNPX, Electron Medical Linac, Fast Neutron Filter

Abstract

A thermal neutron radiography unit using the neutrons which emits a 10 MeV electron linac compact has been designed and simulated via MCNPX Monte Carlo code. The facility was carried out for an extensive range of values for the collimator ratio L/D, the main parameter which describes the quality of the produced radiographic images. The results show that the presented facility provides high thermal neutron flux; while with the use of single sapphire filter fulfills all the suggested values which characterize a high quality thermal neutron radiography system. A comparison with other similar facilities indicates that the use of a photoneutron source using a 10 MeV electrons beam is a useful substitutional for radiographic purposes.

References

[1] Z. Chen, and X. Wang, “Cargo X-ray imaging technology for material discrimination,” Port Technol. Int, Vol. 30, pp. 163-165, 2006
[2] J. E. Eberhardt, Y. Liu, S. Rainey, G. J. Roach, R. J. Stevens, B. D. Sowerby, and J. R. Tickner. “Fast neutron and gamma-ray interrogation of air cargo containers,” In International Workshop on Fast Neutron Detectors, Cape Town, pp. 3-6. April 2006.
[3] A. Buffler, and J. Tickner, “Detecting contraband using neutrons: challenges and future directions,” Radiation Measurements, Vol. 45, No. 10, 1186-1192, 2010.
[4] J. G. Fantidis, and G. E. Nicolaou, “A transportable fast neutron and dual gamma-ray system for the detection of illicit materials,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 648, No. 1, pp. 275-284, 2011.
[5] Y. Takahashi, T. Misawa, C. H. Pyeon, S. Shiroya, and K. Yoshikawa, “Landmine detection method combined with backscattering neutrons and capture γ-rays from hydrogen,” Applied Radiation and Isotopes, Vol. 69, No. 7, pp. 1027-1032, 2011.
[6] N. Elsheikh, G.Viesti, I. ElAgib, and F. Habbani, “On the use of a (252Cf–3He) assembly for landmine detection by the neutron back-scattering method,” Applied Radiation and Isotopes, Vol. 70, No. 4, pp. 643-649, 2012.
[7] J. G. Fantidis, and G. E. Nicolaou, “Multiple fast neutron and gamma-ray beam systems for the detection of illicit materials,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 295, No. 2, pp. 973-977. 2013
[8] J. G. Fantidis, A. Dalakas, C. Potolias, K. Karakoulidis, and P. Kogias, “A Fast Neutron and Gamma Ray System for the Detection of Illicit Materials Based on Simple Isotopic Sources,” Journal of Engineering Science & Technology Review, Vol. 9, No. 6. pp. 58-58, 2016.
[9] J. Rahon, A. Danagoulian, T. D. MacDonald, Z. S. Hartwig, and R. C. Lanza, “Spectroscopic neutron radiography for a cargo scanning system,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 820, pp. 141-145, 2016.
[10] J. G. Fantidis, G. Nicolaou, and N. F. Tsagas, “A Monte Carlo simulation of neutron activation analysis of bulk objects,” Radiation Measurements, Vol. 44, No. 3, pp. 273-277, 2009.
[11] A. A. Naqvi, M. Maslehuddin, M. A. Garwan, M. M. Nagadi, O. S. B. Al-Amoudi, and M. Raashid, “Effect of silica fume addition on the PGNAA measurement of chlorine in concrete,” Applied Radiation and Isotopes, Vol. 68, No. 3, pp. 412-417, 2010.
[12] J. G. Fantidis, G. E. Nicolaou, C. Potolias, N. Vordos, and D. V. Bandekas, “The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron,” Journal of radioanalytical and nuclear chemistry, Vol. 290, No. 2, pp. 289-295, 2011.
[13] F. S. Rasouli and S. F. Masoudi, “Design and optimization of a beam shaping assembly for BNCT based on D–T neutron generator and dose evaluation using a simulated head phantom,” Applied Radiation and Isotopes, Vol. 70, No. 12, pp. 2755-2762, 2012.
[14] Y. Kasesaz, H. Khalafi, and F. Rahmani, “Optimization of the beam shaping assembly in the D–D neutron generators-based BNCT using the response matrix method,” Applied Radiation and Isotopes, Vol. 82, pp. 55-59, 2013.
[15] F. Torabi, S. F. Masoudi, F. Rahmani, F. S. Rasouli, “BSA optimization and dosimetric assessment for an electron linac based BNCT of deep‐seated brain tumors,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 300, No. 3, pp. 1167-1174. 2014.
[16] J. G. Fantidis and A. Antoniadis, “Optimization study for BNCT facility based on a DT neutron generator,” Int. J. Radiat. Res, Vol. 13, No. 1, pp. 13-24, 2015.
[17] J. G. Fantidis and G. Nicolaou, “Optimization of Beam Shaping Assembly design for Boron Neutron Capture Therapy based on a transportable proton accelerator,” Alexandria engineering journal, Vol. 57, No. 4, pp. 2333-2342, 2017.
[18] M. Sedighi-Gilani, M. Griffa, D. Mannes, E. Lehmann, J. Carmeliet, and D. Derome, “Visualization and quantification of liquid water transport in softwood by means of neutron radiography,” International Journal of Heat and Mass Transfer, Vol. 55, No. 21-22, pp. 6211-6221, 2012.
[19] A. El Abd, A. M. Abdel-Monem, and W. A. Kansouh, “Experimental determination of moisture distributions in fired clay brick using a 252Cf source: A neutron transmission study,” Applied Radiation and Isotopes, Vol. 74, pp. 78-85, 2013.
[20] Y. Polsky, L. M. Anovitz, P. Bingham, and J. Carmichael, “Application of neutron imaging to investigate flow through fractures for EGS,” In Proc. 38th workshop on geothermal reservoir engineering, Stanford Univ., Stanford, CA, February 2013.
[21] C. Villani, C. Lucero, D. Bentz, D. Hussey, D. L. Jacobson, and W. J. Weiss, “Neutron radiography evaluation of drying in mortars with and without shrinkage reducing admixtures,” In American Concrete Institute Fall Meeting, Washington, DC, Vol. 26, October 2014.
[22] A. Griesche, E. Dabah, & T. Kannengießer, “Neutron imaging of hydrogen in iron and steel,” Canadian Metallurgical Quarterly, Vol. 54, No. 1, pp. 38-42, 2015.
[23] R. J. Shypailo, “Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 307, No. 3, pp. 1781-1786, 2016.
[24] M. K. Moradllo, S. R. Reese, and W. Jason Weiss. “Using Neutron Radiography to Quantify the Settlement of Fresh Concrete,” Advances in Civil Engineering Materials, Vol. 8.1, pp. 71-87, 2019,
[25] M. K. Moradllo, C. Qiao, H. Hall, M. T. Ley, S. R. Reese, and W. J. Weiss “Quantifying fluid filling of the air voids in air entrained concrete using neutron radiography,” Cement and Concrete Composites, Vol. 104, 103407, 2019.
[26] N. Alderete, Y. V. Zaccardi, D. Snoeck, B. Van Belleghem, P. Van den Heede, K. Van Tittelboom, and N. De Belie, “Capillary imbibition in mortars with natural pozzolan, limestone powder and slag evaluated through neutron radiography, electrical conductivity, and gravimetric analysis,” Cement and Concrete Research, Vol. 118, pp. 57-68, 2019.
[27] J. M., Campillo-Robles, D., Goonetilleke, D., Soler, N., Sharma, D. M., Rodríguez, T., Bücherl,... & V. Karahan, “Monitoring lead-acid battery function using operando neutron radiography,” Journal of Power Sources, Vol.438, 226976, 2019
[28] N. Di Luozzo, M. Schulz, and M. Fontana, “Imaging of boron distribution in steel with neutron radiography and tomography,” Journal of Materials Science, pp. 1-11, 2020.
[29] A. El Abd, S. E. Kichanov, M. Taman, and K. M. Nazarov, “Penetration of water into cracked geopolymer mortars by means of neutron radiography,” Construction and Building Materials, 119471, 2020.
[30] Joos, G. Schmitz, M. J. Mühlbauer, and B. Schillinger, “Investigation of moisture phase change in porous media using neutron radiography and gravimetric analysis,” International Journal of Heat and Mass Transfer, Vol. 53, No. 23-24, pp. 5283-5288, 2010
[31] D. S. Hussey, and D. L. Jacobson, “Applications of neutron imaging and future possibilities,” Neutron News, Vol. 26, No.2, pp. 19-22, 2015.
[32] E. Lehmann, P. Trtik, and D. Ridikas, “Status and perspectives of neutron imaging facilities,” Physics Procedia, Vol. 88, pp. 140-147, 2017.
[33] International Atomic Energy Agency Retrieved from https://nucleus.iaea.org/RRDB/RR/ReactorSearch.aspx?
[34] J. G. Fantidis, B. V. Dimitrios, P. Constantinos, and N. Vordos, “Fast and thermal neutron radiographies based on a compact neutron generator,” Journal of Theoretical and Applied Physics, Vol. 6, No. 1, 20. 2012
[35] J. G., Fantidis, G. E., Nicolaou, and N. F. Tsagas, “Optimization study of a transportable neutron radiography unit based on a compact neutron generator,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 618, No. 1-3, pp. 331-335, 2010.
[36] K. Bergaoui, N. Reguigui, C. K. Gary, J. T. Cremer, J. H. Vainionpaa, and M. A. Piestrup, “Design, testing and optimization of a neutron radiography system based on a Deuterium–Deuterium (D–D) neutron generator,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 299, No. 1, pp. 41-51, 2014.
[37] M. Taylor, E. Sengbusch, C. Seyfert, E. Moll, & R. Radel, “Thermal neutron radiography using a high-flux compact neutron generator,” Physics Procedia, Vol.88, pp. 175-183, 2017.
[38] E. Lehmann, G. Frei, A. Nordlund, & B. Dahl, “Neutron radiography with 14 MeV neutrons from a neutron generator,” IEEE transactions on nuclear science, Vol. 52, No. 1, pp. 389-393, 2005.
[39] A. X. Da Silva, and V. R. Crispim, “Study of a neutron radiography system using 252Cf neutron source,” Radiation Physics and Chemistry, Vol. 61, No. 3-6, pp. 515-517, 2001.
[40] J. Fantidis, G. Nicolaou, & N. Tsagas, “A transportable neutron radiography system,” Journal of radioanalytical and nuclear chemistry, Vol. 284, No. 2, pp. 479-484. 2010.
[41] J. G., Fantidis, C., Potolias, N., Vordos, & D. V. Bandekas, “Optimization study of a transportable neutron radiography system based on a 252Cf neutron source,” Moldavian J Phys Sci, Vol. 10, No. 1, pp. 121-130, 2011.
[42] U. Pujala, L. Thilagam, T. S. Selvakumaran, D. K. Mohapatra E. A. Raja, K. V. Subbaiah, and R. Baskaran, “Analysis of neutron streaming through the trenches at linac based neutron generator facility,” IGCAR. Radiation Protection and Environment, Vol. 34, No. 4, pp. 262-266, 2011.
[43] H. Jafari, & S. A. H. Feghhi, “Design and simulation of neutron radiography system based on 241Am–Be source,” Radiation Physics and Chemistry, Vol. 81, No. 5, pp. 506-511, 2012.
[44] J. G. Fantidis, “Comparison of different geometric configurations and materials for neutron radiography purposes based on a 241Am/Be neutron,” Journal of Taibah University for Science, Vol. 11, No. 6, pp. 1214-1220, 2017.
[45] J. G. Fantidis, D. V. Bandekas, & N. Vordos, “The replacement of research reactors with a compact proton linac for neutron radiography,” Radiation Physics and Chemistry, Vol.86, pp. 74-78, 2013.
[46] J. G. Fantidis, “The use of electron linac for high quality thermal neutron radiography unit,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 908, pp. 361-366, 2018.
[47] T. Bücherl, N. Kardjilov, C. L. von Gostomski, E. Calzada, and A. M. ELGhobary, “A mobile neutron source based on the SbBe reaction,” Applied radiation and isotopes, Vol. 61, No. 4, pp. 659-662, 2004.
[48] T. Bucherl, N. Kardjilov, C. L. Von Gostomski, and E. Calzada, Performance studies of a mobile neutron source based on the SbBe reaction,” IEEE transactions on nuclear science, Vol.b52, No. 1, pp. 342-345, 2005.
[49] Y. Zou, W. Wen, Z. Guo, Y. Lu, S. Peng, K. Zhu and Q. Zhou, “PKUNIFTY: A neutron imaging facility based on an RFQ accelerator,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 651, No. 1, pp. 62-66, 2011.
[50] Shaaban, “Conceptual design of a thermal neutron radiography facility in the cyclotron 30 LC using the MCNPX code,” Indian Journal of Pure & Applied Physics (IJPAP), Vol. 55, No. 2, pp. 135-144, 2017.
[51] J. Fantidis, “A study of a transportable thermal neutron radiography unit based on a compact RFI linac,” Journal of Radioanalytical and Nuclear Chemistry, Vol.293, No. 1, pp. 95-101, 2012.
[52] J. Mokhtari, F. Faghihi, & J. Khorsandi, “Design and optimization of the new LEU MNSR for neutron radiography using thermal column to upgrade thermal flux,” Progress in Nuclear Energy, Vol. 100, pp. 221-232, 2017.
[53] J. S. Hendricks, “MCNPX version 2.5. c (No. LA-UR-03-2202),” Los Alamos National Laboratory, 2003.
[54] F. Rahmani, and M. Shahriari, “Hybrid photoneutron source optimization for electron accelerator-based BNCT,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 618, No. 1-3, pp. 48-53, 2010.
[55] F. Rahmani, and M. Shahriari, “Beam shaping assembly optimization of Linac based BNCT and in-phantom depth dose distribution analysis of brain tumors for verification of a beam model,” Annals of Nuclear Energy, Vol. 38, No. 2-3, pp. 404-409, 2011
[56] F., Torabi, S. F., Masoudi, and F. Rahmani, “Photoneutron production by a 25 MeV electron linac for BNCT application,” Annals of Nuclear Energy, Vol. 54, pp. 192-196, 2013.
[57] S. F. Masoudi, and F. S. Rasouli, “Investigating a multi-purpose target for electron linac based photoneutron sources for BNCT of deep-seated tumors,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 356, pp. 146-153, 2015.
[58] A. Taheri, and A. Pazirandeh, “Measurements of the thermal neutron flux for an accelerator-based photoneutron source,” Australasian physical & engineering sciences in medicine, Vol. 39, No. 4, pp. 857-862, 2016
[59] M. Tatari, and A. H. Ranjbar, “Design of a photoneutron source based on 10 MeV electrons of radiotherapy linac,” Annals of Nuclear Energy, Vol. 63, pp. 69-74, 2014.
[60] J. G. Fantidis, “The use of electron linac for high quality thermal neutron radiography unit,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 908 pp. 361-366, 2018.
[61] D. F. R. Mildner, and G. P. Lamaze, “Neutron transmission of single-crystal sapphire,” Journal of applied crystallography, Vol. 31, No. 6, pp. 835-840, 1998
[62] Schillinger, “Estimation and measurement of L/D on a cold and thermal neutron guide,” Nondestructive Testing and Evaluation, Vol. 16, No. 2-6, pp. 141-150, 2001
[63] J. C. Domanus, “Collimators for thermal neutron radiography: An overview,” Markgraf J.F.W. (Ed.), 1987
[64] J. C. Domanus, and R. S. Matifield, “Neutron Radiography Handbook,” D. Reidel Publ. Co., Dordrecht, 1981
[65] G. M. MacGillivray, “Imaging with neutrons: the other penetrating radiation. In Penetrating Radiation Systems and Applications II, International Society for Optics and Photonics, Vol. 4142, pp. 48-58, December 2000.
[66] M. R. Hawkesworth, “Neutron radiography. Equipment and methods,” Atomic Energy Review, Vol. 15, No. 2, pp. 169-220, 1977.
Published
2020-12-01
How to Cite
Fantidis, J., & Nicolaou, G. (2020). Development of a Neutron Radiography System based on a 10 MeV Electron Linac. Majlesi Journal of Electrical Engineering, 14(4), 21-28. https://doi.org/https://doi.org/10.29252/mjee.14.4.21
Section
Articles