A Low-power, CMOS Optical Communication Receiver System for 5Gbps Applications based on RGC Structure

  • Sima Honarmand Department of Electrical Engineering, Beyza Branch, Islamic Azad University, Beyza, Iran.
  • Soorena Zohoori Department of Electrical Engineering, Beyza Branch, Islamic Azad University, Beyza, Iran. http://orcid.org/0000-0001-5874-9573
  • Kavoos Abbasi Department of Physics, College of Science, Yasouj University, Yasouj, Iran
Keywords: Optical Receiver, Low-Power, Transimpedance Amplifier, Limiting Amplifier, Regulated Cascode


An optical communication receiver system is presented in this research using 65nm CMOS, which consists of three low-power active differential stages as Limiting Amplifier (LA) following an ultra-low-power RGC-Based Transimpedance Amplifier (RB-TIA). The presented active circuit of the RB-TIA is followed by a gain stage that extends the -3dB frequency of the circuit by creating a resonance for the load capacitance. Thus, needless of consuming extra power, a wide-bandwidth circuit has been designed. In addition, employing active-inductor loads within the LA stages enables obtaining a 5Gbps receiver system. The RB-TIA consumes 573µW and provides 3.52GHz frequency, while the complete optical receiver consumes only 4.76mW power to provide -3dB frequency of 3.5GHz and high gain of 80dB (10’000). The circuits have been mathematically presented and discussed, and simulations have justified the presented circuit design.


[1] R. Soltanisarvestani, S. Zohoori, A. Soltanisarvestani, “A RGC-Based, Low-Power, CMOS Transimpedance Amplifier for 10Gb/s Optical Receivers”, International Journal of Electronics, 2020.
[2] S. Zohoori, T. Shafiefi, M. Dolatshahi, “A 274µW, Inductor-less, Active RGC-Based Transimpedance Amplifier Operating at 5Gbps ”, 27th Iranian conference on electrical Engineering (ICEE2019), 2019.
[3] S. Zohoori & M. Dolatshahi, “A CMOS Low-Power Optical Front-End for 5 Gbps Applications”, Fiber and Integrated Optics, Vol. 37, No. 1, pp. 37-56, 2018.
[4] S. Zohoori, M. Dolatshahi, M. Pourahmadi & M. Hajisafari, “An Inverter-Based, CMOS, Low-Power Optical Receiver Front-End”, Fiber and Integrated Optics, Vol. 38, No. 1, pp. 1-20, 2019.
[5] S. Zohoori, M. Dolatshahi, “An Inductor-Iess, 10Gbps Trans-impedance Amplifier Operating at Low Supply-Voltage”, 25th Iranian Conference on Electrical Engineering (lCEE2017), pp. 145-148, 2017.
[6] Soorena Zohoori, Mehdi Dolatshahi, Majid Pourahmadi & Mahmoud Hajisafari, “A CMOS, low power current mirror based transimpedance amplifier for 10 Gbps optical communications”, Microelectronics Journal, Vol. 80, pp. 18-27, 2018.
[7] M. Atef, H. Zimmermann. “Low power, 10Gbps inductor-less inverter based common drain active trans-impedance amplifier in 40nm CMOS”, Analog Integrated Circuits and Signal Processing, Vol. 76, No. 3, pp. 367-376, 2013.
[8] S. Zohoori, M. Dolatshahi, “A low‐power CMOS transimpedance amplifier in 90‐nm technology for 5‐Gbps optical communication applications”. Int J Circ Theor Appl.;1–14. https://doi.org/10.1002/cta.2565, 2018.
[9] Y. Changliang, M. Luhong, X. Xingdong. “Standard CMOS Implementation of a novel, fully differential optoelectronic integrated receiver”, Chinese Journal of Optoelectronics Laser, Vol. 20, No.4, pp.432-436, 2009.
[10] H. Beiju, X. Zhang, C. Hongda. “1-Gb/s zero-pole cancellation CMOS trans-impedance amplifier for Gigabit Ethernet applications”, Journal of Semiconductors, Vol. 30, No.10, pp. 1-5, 2009.
[11] W, Chen, Y. Cheng, S. Lin. “A 1.8-V 10-Gb/s fully integrated CMOS optical receiver analog front-end”. IEEE Journal Solid-State Circuits, Vol. 40. No.6, pp.1388-1395, 2005.
[12] J D. Jin, S. H. Hsu. “A 75-dB 10-Gbps trans-impedance amplifier in 0.18-_m CMOS technology”. IEEE Photonics Techno long Letter, Vol. 20, No.24, pp.2177-2182, 2008.
[13] W. Z. Chen, S. H. Huang. “A 2.5Gbps CMOS fully integrated optical receiver with lateral PIN detector”. IEEE Custom Integrated Circuits Conference, pp.293-299, 2007.
[14] B. Razavi, “Design of integrated circuits for optical communications”, Wiley series in lasers and applications, 2nd edition, 2003.
[15] X. Hui, F. Jun, L. Quan and L. Wei, “A 3.125Gb/s Inductor-less Amplifier for Optical Communication in 0.35µm CMOS”, Journal of Semiconductors, Chinese Institute of electronics, Vol.32, No. 10, pp. 105003_1-105003_5, 2011.
[16] W. Chen, Y. Cheng and D. Lin. “A 1.8v 10Gbps Fully Integrated CMOS Optical Receiver Analog Front End”, IEEE Journal of Solid State Circuits, Vol. 40, No. 6, pp.3904-3907, 2007.
[17] Ch. Wu, Ch. Lee, W. Chen, and Sh. Liu, “CMOS Wideband amplifier using multiple inductive-series peaking technique”, IEEE journal of solid-state Circuits, Vol.40, No. 2, pp. 548-552, 2005.
[18] R.Y. Chen, Z.Y. Yang, “CMOS transimpedance amplifier for gigabit-per-second optical wireless communications”, IEEE Transactions on Circuits and Systems (II), Vol. 63, No. 5, pp. 418–422, 2016.
[19] D. Chen, S. Yeh, X. Shi, M.A. Do, C.C. Boon, W.M. Lim, “Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission”, IEEE Transactions on Very Large Scale Integerated (VLSI) System, Vol. 21, pp. 1516–1525, 2013.
[20] M.H. Taghavi, L. Belostotski, J.W. Haslett, P. Ahmadi, “10-Gb/s 0.13-μm CMOS inductor less modified-RGC transimpedance amplifier”, IEEE Transactions on Circuits and Systems, Vol. 62, No. 8, pp. 1971–1980, 2015.
[21] P. Andre, S. Jacobus, “Design of a high gain and power efficient optical receiver front-end in 0.13μm RF CMOS technology for 10 Gbps applications”, Microw. Opt. Technol. Lett., Vol. 58, No. 6, pp. 1499–1504, 2016.
[22] K. Honda, H. Katsurai, M. Nada, “A 56-Gb/s transimpedance amplifier in 0.13-μm SiGe BiCMOS for an optical receiver with −18.8dBm input sensitivity”, in Proceeding of the IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp. 1-4, 2016.
[23] M. Rakideh, M. Seifouri, P. Amiri, “A folded cascode-based broadband transimpedance amplifier for optical communication”, Microelectronics Journals. Vol. 54, pp. 1–8, 2016.
[24] M. Seifouri, P. Amiri, I. Dadras, “A transimpedance Amplifier for optical communication network based on active voltage-current feedback” Microelectronics Journal, Vol. 67, pp. 25-31, 2017.
[25] Y. Chen, J. Li, Z. Zhang, H. Wang, Y. Zhang, “12-Channel, 480 Gbit/s optical receiver analogue front-end in 0.13μm BiCMOS technology”, Electronics Letter, Vol. 53, No. 7, pp. 492–494, 2017.
[26] M. Seifouri, P. Amiri, M. Rakide, “Design of broadband transimpedance amplifier for optical communication systems”, Microelectronics Journal, Vol. 46, pp. 679-684, 2015.
[27] S. Zohoori, M. Dolatshahi, “A Low Power CMOS optical communication front-end using a three-stage TIA for 5Gb/s Applications”, Majlesi Journal of Electrical Engineering, Vol. 11, No. 4, pp. 11-19, 2017.
[28] J. Han, B. Choi, K. Park, W. S. Oh, S. M. Park, “A 2.5Gb/s ESD-protected dual-channel optical transceiver array”, IEEE Asian Solid-State Circuits Conference, pp. 156-159, 2007.
[29] D. J. A. Groeneveld, “Bandwidth Extension and Noise Cancelling for TIAs”, MSc. Thesis, University of Twente (The Netherlands), 2010.
[30] M. Atef, H. Zimmerman, “Optical Receiver Using Noise cancelling with an Integrated photodiode in 40nm CMOS Technology”, IEEE Transactions on Circuits and Systems-I, Vol. 60, No. 7, pp. 1929-1936, 2013.
[31] W. Z. Chen, S. H. Huang, “A 2.5Gbps CMOS fully integrated optical receiver with lateral PIN detector”, IEEE Custom Integrated Circuits Conference, pp. 293-296, 2007.
[32] A. Rousson and T. C. Carusone, “A multi-lane Optical Receiver with integrated photodiode in 90nm standard CMOS”, pp. 1-3, 2012.
[33] Y. Dong, K. Martin, “A Monolithic 3.125Gbps fiber optic receiver front-end for POF applications in 65nm CMOS”, IEEE Custom Integrated Circuits Conference (CICC), pp. 1-4, 2011.
How to Cite
Honarmand, S., Zohoori, S., & Abbasi, K. (2020). A Low-power, CMOS Optical Communication Receiver System for 5Gbps Applications based on RGC Structure. Majlesi Journal of Electrical Engineering, 14(4), 57-66. https://doi.org/https://doi.org/10.29252/mjee.14.4.57