Robust State Estimation for Uncertain Switched Fuzzy Systems with Time-Varying Delays by Average Dwell Time Approach

Shirin Yousefizadeh¹, Jafar Zarei²
1- Department of Control Engineering, School of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran.
Email: shirin.yousefizadeh@gmail.com (Corresponding author)
2- Department of Control Engineering, School of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran.
Email: zarei@sutech.ac.ir

Received: Feb. 2015 Revised: May 2015 Accepted: July 2015

ABSTRACT:
Switched systems are an important class of hybrid systems. In recent years, such systems have drawn considerable attentions in control field. A switched fuzzy system is a switching system, for which all subsystems are fuzzy systems. This paper investigates the robust state estimation problem for a class of uncertain switched fuzzy systems with time-varying delays. By using appropriate switched Lyapunov functional approach, average dwell time scheme and H_∞ filtering theory, delay dependent sufficient conditions for the solvability of this problem are established in terms of linear matrix inequalities (LMIs). An illustrative example is provided to show the effectiveness of the proposed theoretical results.

KEYWORDS: Robust State Estimation, Average Dwell Time, Switched Fuzzy Systems, LMIs.

1. INTRODUCTION
Switched systems are a class of sophisticated nonlinear systems that consist of many subsystems and a switching strategy that governs switching between the subsystems [1]. Most of modern technological systems, such as water quality process [3], unmanned aerial vehicles [4] and automotive engine control [5], require several dynamical systems to describe their behaviour due to various environmental factors [2]. Using Takagi-Sugeno (T-S) approach, a nonlinear system can be represented by a set of local linear systems [6]. Switching between subsystems in switched systems can be assumed to be fast or slow. In stabilization context, specifying a dwell time is conservative [7]. On the other hand, time delay is very common in real applications because of mechanical structures, signal transmission over the network and so on. The existence of time delay in a system usually lead to instability or bad performance of the system [8]. Moreover, unknown inputs and model uncertainties are coupled in many practical systems. H_∞ filtering theory is used to solve this obstacle [9]. In [10], H_∞ control for asynchronous switched systems with mode dependent average dwell time is studied.

Lots of researches have been devoted to stability of switched systems. Stabilization of switched linear systems with unknown time-varying delays under arbitrary switching signal has been investigated in [11]. Authors in [12] have studied stability of switched systems with stable and unstable subsystems via average dwell time approach. In [13] stability of discrete time linear systems with a constant delay factor is considered which render the delay-independent results. The case of time-varying delay is addressed in [14] that cause to delay dependent results. Delay dependent approaches are more practical and yield less conservative results [15]. In [16], a delay-dependent stability criterion, based on an input-output approach has been studied such that the interconnected system is asymptotically stable. Moreover, there have been several studies in the field of switched fuzzy systems. In [17] fuzzy reliable controllers via observer switching for uncertain time-delay switched fuzzy systems are designed. Authors in [18] have designed state feedback controllers for switched fuzzy systems which make the closed loop system quadratically stable. To the best of our knowledge, the problem of state estimation for switched fuzzy systems, has not been considered yet, which motivated us to study this issue.

The aim of this paper is to study robust state estimation for uncertain time-delay switched fuzzy systems with time-varying state-delays, under arbitrary switching signal. The proposed approach uses switched Lyapunov
functional method and average dwell time approach. A numerical example demonstrate the effectiveness of the proposed approach.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following switched fuzzy system that each subsystem is an uncertain time-delay fuzzy system:

$$R_k^i: \text{if } \xi_i \in M_{i1} \ldots \text{and } \xi_p \in M_{p1}, \text{ then}$$

$$x_{k+1} = (A_{ik} + \Delta A_{ik})x_k + (A_{pk} + \Delta A_{pk})x_{k-d} + (B_{ik} + \Delta B_{ik})u_k + G_{ik}f_k + E_{ik}d_k$$

$$y_k = C_{ik}x_k + C_{ik}x_{k-d} + Q_{ik}u_k + D_{ik}d_k$$

(1)

Where $x_k \in \mathbb{R}^n$, $y_k \in \mathbb{R}^r$ and $d_k \in \mathbb{R}^d$ are respectively the state, the measured output and the unknown input that belongs to $L_2[0, \infty)$. $\sigma = \sigma(x_k): [0, +\infty) \rightarrow \sum_{i=1}^{m} = \{1,2,\ldots,m\}$ is the switching signal. $u_k \in \mathbb{R}^d$ is the control input and $f_k \in \mathbb{R}^f$ is the fault vector. The matrices $A_{ik}, A_{pk}, B_{ik}, G_{ik}, E_{ik}, C_{ik}, Q_{ik}, D_{ik}, J_{ik}$ are constant with appropriate dimensions; $\Delta A_{ik}, \Delta A_{pk}, \Delta B_{ik}$ are norm-bounded unknown matrices representing parameter uncertainties, and are assumed to be of the form of (5). R_k^i denotes the ith subsystem. The global fuzzy model of the ith switched subsystem is represented by:

$$x_{k+1} = \sum_{i=1}^{m} \eta_i(\xi_k) \left((A_{ik} + \Delta A_{ik})x_k + (A_{ik} + \Delta A_{ik})x_{k-d} + (B_{ik} + \Delta B_{ik})u_k + G_{ik}f_k + E_{ik}d_k \right)$$

$$y_k = \sum_{i=1}^{m} \eta_i(\xi_k) \left(C_{ik}x_k + C_{ik}x_{k-d} + Q_{ik}u_k + D_{ik}d_k \right)$$

$$0 \leq \eta_i(\xi_k) \leq 1, \sum_{i=1}^{m} \eta_i(\xi_k) = 1, \quad i = 1,\ldots,m$$

Where

$$\eta_i(\xi_k) = \Theta_i(\xi_k) / \sum_{i=1}^{m} \Theta_i(\xi_k), \Theta_i(\xi_k) = \prod_{p=1}^{P} m_{ip}^{i}(\xi_{pk})$$

In which $m_{ip}^{i}(\xi_{pk})$ is the membership function. Since states of the system are not often measured directly, it is assumed that $\sigma = \sigma(\hat{x}_i)$ where \hat{x}_i is the filter’s state. Assume that operation space can be partitioned into m regions, i.e. $\bigcup_{i=1}^{m} \Omega_i = \mathbb{R}^n$ and $\bigcap_{i=1}^{m} \Omega_i = \emptyset, i \neq j$. When $\xi \in \Omega_i$ the switching signal is $\sigma = \sigma(\hat{x}_i) = i$, which depends on

\(\Omega_1, \Omega_2, \ldots, \Omega_m\). When $\hat{x}_i \notin \Omega_i$ the switching signal is subjected to:

$$\mu_i(\hat{x}_i) = \begin{cases} 1, & \hat{x}_i \in \Omega_i \\ 0, & \hat{x}_i \notin \Omega_i \end{cases}$$

(3)

that is, if and only if $\sigma = \sigma(\hat{x}_i) = i$, $\mu_i(\hat{x}_i) = 1$. Thus the system (1) is described by [17]:

$$x_{k+1} = \sum_{i=1}^{m} \sum_{l=1}^{N} \mu_i(\hat{x}_i) \eta_l(\xi_k) \left((A_{il} + \Delta A_{il})x_k + (A_{il} + \Delta A_{il})x_{k-d} \right)$$

$$y_k = \sum_{i=1}^{m} \sum_{l=1}^{N} \mu_i(\hat{x}_i) \eta_l(\xi_k) \left[C_{il}x_k + C_{il}x_{k-d} + Q_{il}u_k + D_{il}d_k + J_{il}f_k \right]$$

(4)

Consider the discrete-time switched fuzzy system that is described by (4) in which $\Delta A_{il}, \Delta A_{il}, \Delta B_{il}$ satisfying

$$[\Delta A_{il}(k) \Delta A_{il}(k) \Delta B_{il}(k)] = H_{il}\bar{F}_k[\bar{C}_{il} \bar{C}_{il} \bar{C}_{il}]$$

(5)

where $\bar{H}_{il}, \bar{C}_{il}, \bar{C}_{il}, \bar{C}_{il}$ are constant matrices and \bar{F}_k is an unknown time-varying matrix satisfying $\bar{F}_k^T \bar{F}_k \leq 1$. The considered observer is as:

$$\hat{x}_{k+1} = \sum_{i=1}^{m} \sum_{l=1}^{N} \mu_i(\hat{x}_i) \eta_l(\xi_k) \left(A_{il} \hat{x}_k + B_{il}y_k \right)$$

$$r_k = \sum_{i=1}^{m} \sum_{l=1}^{N} \mu_i(\hat{x}_i) \eta_l(\xi_k) \left(C_{il} \hat{x}_k + D_{il}y_k \right)$$

(6)

Where \hat{x}_i is the estimated state and r_k is the residual signal. $A_{il}, B_{il}, C_{il}, D_{il}$ are the filter parameters and $\hat{f}(z) = W_f(z)f(z)$ is the weighted fault with the following minimal realization:

$$\hat{x}_{k+1} = A_{il}\hat{x}_k + B_{il}f_k$$

$$\hat{f}_k = C_{il}\hat{x}_k + D_{il}f_k$$

(7)

where \hat{x}_k is the state of the weighted fault and $A_{il}, B_{il}, C_{il}, D_{il}$ are known constant matrices. Denoting $e_k = r_k - \hat{f}_k$, which r_k is an estimate of the \hat{f}_k . The augmented system can be written as:

$$\hat{x}_{k+1} = \sum_{i=1}^{m} \sum_{l=1}^{N} \mu_i(\hat{x}_i) \eta_l(\xi_k) \left(A_{il} \hat{x}_k + A_{il} \hat{x}_{k-d} + \bar{B}_{il} \omega_k \right)$$

$$e_k = \sum_{i=1}^{m} \sum_{l=1}^{N} \mu_i(\hat{x}_i) \eta_l(\xi_k) \left(\bar{C}_{il} \hat{x}_k + \bar{C}_{il} \hat{x}_{k-d} + \bar{D}_{il} \omega_k \right)$$

(8)
Majlesi Journal of Electrical Engineering

\[
\dot{x}_1 = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \quad \ddot{x}_1 = \left(\begin{array}{c} x_{1,1} \\ x_{2,1} \end{array}\right) \quad \tilde{A}_d = \left(\begin{array}{cc} A_d + \Delta A_d & 0 \\ 0 & A_d \end{array}\right) \quad \tilde{B}_d = \left(\begin{array}{c} B_{d_1}C_{d_1} \\ 0 \\ 0 \end{array}\right)
\]

Theorem 1: For given scalars \(\alpha > 0, \mu > 1 \) and any delay, \(d(k) \) satisfying \(d_m \leq d(k) \leq d_M \), if there exist the positive definite matrices \(P_d, Q_d, R_d, R_{d1} \) such that the following inequalities holds:

\[
\begin{bmatrix}
\psi & d_d\phi_d^2 R_{d1} & d_d\phi_d^2 R_{d2} \\
* & -R_{d1} & 0 \\
* & * & -R_{d2}
\end{bmatrix} < 0
\]

(12)

\[
P_d \leq \mu P_d, \quad Q_d \leq \mu Q_d, \quad R_{d1} \leq \mu R_{d1}, \quad R_{d2} \leq \mu R_{d2}
\]

(13)

then the system (8) is exponentially stable with decay rate \(\beta = \sqrt{(1-\alpha)\mu^{-1/2}} \) and under any switching signal with the average dwell time \(T_a \) satisfying (14) where:

\[
\bar{d} = d_m - d_m + 1
\]

(14)

Remark 2 [19]: For predetermined scalars \(\gamma > 0 \), \(0 < \alpha < 1 \), system (8) is exponentially stable with an exponential \(H_\infty \) performance \(\gamma \), if it is exponentially stable and under zero initial conditions the estimated error \(e \) satisfies:

\[
\sum_{i=0}^{\infty} (1-\alpha)^i e^T(s)e(s) \leq \sum_{i=0}^{\infty} \gamma^i \omega^T(s)\omega(s)
\]

(9)

Lemma 1 [20]: For any matrix \(W \in \mathbb{R}^{n \times n} \), \(W = W^T \geq 0 \) and two positive integers \(r, r_0 \), which \(r \geq r_0 \geq 1 \), the following inequality holds:

\[
\left(\sum_{i=r_0}^{\infty} x(i)\right)^T W \left(\sum_{i=r_0}^{\infty} x(i)\right) \leq \bar{r} \sum_{i=r_0}^{\infty} x^T(i)Wx(i)
\]

(10)

where \(\bar{r} = r - r_0 + 1 \).

Lemma 2 [21]: For any matrices \(A, Q = Q^T \) if there exist a matrix \(T \), following inequalities are equal:

a. \(A^T P A - Q < 0 \)

b. \[
\begin{bmatrix}
-Q & A^T T \\
* & -P - T - T^T
\end{bmatrix} < 0
\]

(11)

2.1. Filter Synthesis

In this section a delay-dependent sufficient condition on the existence of the robust filters would be given.

Theorem 1: For given scalars \(\alpha > 0, \mu > 1 \) and any delay, \(d(k) \) satisfying \(d_m \leq d(k) \leq d_M \), if there exist the positive definite matrices \(P_d, Q_d, Q_{d1}, R_{d1}, R_{d2} \) such that the following inequalities holds:

Proof: First, exponential stability of the system (8) with \(\omega = 0 \) is considered. Choose the following switched Lyapunov functional

Using Schur complement from (12), we conclude:

\[
\Delta V_{2}(k) + \alpha V_{2}(k) + \Gamma(k) \leq 0
\]

Using (22) recursively gives:

\[
V_{2}(k) \leq (1 - \alpha)k V_{2}(k) - \sum_{s=k-1}^{k} (1 - \alpha)^{-1} \Gamma(s)
\]

Now consider following performance index

\[
J_{per}(s) = \sum_{k=0}^{s} (1 - \alpha)^{s} e^{T}(s)e(s) - \gamma^{2} \omega^{T}(s)\omega(s)
\]

Using (13) and (23) we can obtain:

\[
V_{a}(k) \leq (1 - \alpha)^{k} \mu^{N_{a}(k),k} V_{a}(k) - \sum_{s=k-1}^{k} (1 - \alpha)^{-1} \Gamma(s)
\]

Under zero initial condition, from (30) one can obtain

\[
\sum_{s=k_{0}}^{k} \mu^{N_{a}(s),s} (1 - \alpha)^{s} \Gamma(s) \leq 0
\]

Using \(N_{a}(0,s) \leq \frac{s}{T_{a}} \leq \frac{\ln(1 - \alpha)}{\ln \mu} \) from (26) we have:

\[
\beta_{1} = \min_{i \in M} \lambda_{\max}(P_{i}),
\]

\[
\beta_{2} = \max_{i \in M} \lambda_{\max}(P_{i}) + d_{1} \max_{i \in M} \lambda_{\max}(H^{T}Q_{il}^{T}H) + d_{2} \max_{i \in M} \lambda_{\max}(H^{T}Z_{il}^{T}H)
\]

From (14) we have:

\[
(1 - \alpha)\mu^{T} \leq (1 - \alpha)\mu^{T - 1 - \alpha} \mu \leq \frac{1 - \alpha}{1 - \alpha} = 1 \rightarrow \beta < 1
\]

therefore, using Remark 2, the augmented system with \(\alpha(k) = 0 \) is exponentially stable. Like the previous steps we have:

\[
\Delta V_{2}(k) + \alpha V_{2}(k) + \Gamma(k) \leq 0
\]

Using Schur complement from (12), we conclude:

\[
\Delta V_{2}(k) + \alpha V_{2}(k) + \Gamma(k) \leq 0
\]

Using (22) recursively gives:

\[
V_{2}(k) \leq (1 - \alpha)k V_{2}(k) - \sum_{s=k-1}^{k} (1 - \alpha)^{-1} \Gamma(s)
\]

Now consider following performance index

\[
J_{per}(s) = \sum_{k=0}^{s} (1 - \alpha)^{s} e^{T}(s)e(s) - \gamma^{2} \omega^{T}(s)\omega(s)
\]

Using (13) and (23) we can obtain:

\[
V_{a}(k) \leq (1 - \alpha)^{k} \mu^{N_{a}(k),k} V_{a}(k) - \sum_{s=k-1}^{k} (1 - \alpha)^{-1} \Gamma(s)
\]

Under zero initial condition, from (30) one can obtain

\[
\sum_{s=k_{0}}^{k} \mu^{N_{a}(s),s} (1 - \alpha)^{s} \Gamma(s) \leq 0
\]

Using \(N_{a}(0,s) \leq \frac{s}{T_{a}} \leq \frac{\ln(1 - \alpha)}{\ln \mu} \) from (26) we have:
Majlesi Journal of Electrical Engineering

\[\sum_{k=0}^{\infty} \mu_k \psi_k(t) e^T(s) e(s) \leq \sum_{k=0}^{\infty} \alpha_k e^T(s) o(s) \]

(27)

Considering \(k \to \infty \) gives:

\[\sum_{k=0}^{\infty} (1-\alpha) \psi_k(t) e^T(s) e(s) \leq \sum_{k=0}^{\infty} \alpha_k e^T(s) o(s) \to J_{psr} < 0 \]

(28)

therefore, for any nonzero \(\alpha_k \in l_2[0, \infty) \)

\[\sum_{k=0}^{\infty} (1-\alpha) \psi_k(t) e^T(s) e(s) \leq \sum_{k=0}^{\infty} \alpha_k e^T(s) o(s) \]

which completes the proof.

Theorem 2: For given scalars \(\alpha > 0, \mu > 1 \) and any delay, \(d(k) \) satisfying \(d_n \leq d(k) \leq d_M \), if there exist the positive definite matrices \(P_1, Q_{12d}, Q_{2d}, R_{12d}, R_{2d} \) and matrices \(T_{id}, M_{id}, M_{2id} \) such that the following inequality holds

\[
\begin{bmatrix}
\Omega & \Xi_1 & \Xi_2 & \Xi_3 & \Xi_4 \\
* & Z_{10} - M_{id} - M_{id}^T & 0 & 0 & 0 \\
* & * & Z_{20} - M_{2id} - M_{2id}^T & 0 & 0 \\
* & * & * & -I & 0 \\
* & * & * & * & \Xi_5 \\
\end{bmatrix} < 0
\]

(29)

where

\[
P_d = \begin{bmatrix}
P_{11d} & P_{12d} & P_{13d} \\
* & P_{22d} & P_{23d} \\
* & * & P_{33d} \\
\end{bmatrix}, \quad T_d = \begin{bmatrix}
T_{11d} & T_{12d} & T_{13d} \\
T_{21d} & T_{22d} & T_{23d} \\
T_{31d} & T_{32d} & T_{33d} \\
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
\Omega_{11} & 0 & 0 & 0 \\
* & \psi_{22} & \psi_{23} & \psi_{24} \\
* & * & \psi_{33} & 0 \\
* & * & * & \psi_{44} \\
* & * & * & * & -\gamma^2 I \\
\end{bmatrix}, \Xi = \begin{bmatrix}
\Xi_{11} \\
\Xi_{21} \\
\Xi_{22} \\
\Xi_{23} \\
\Xi_{24} \\
\Xi_{25} \\
\Xi_{31} \\
\Xi_{32} \\
\Xi_{33} \\
\Xi_{34} \\
\Xi_{35} \\
\Xi_{41} \\
\Xi_{42} \\
\Xi_{43} \\
\Xi_{44} \\
\Xi_{45} \\
\end{bmatrix}
\]

with

\[
\begin{bmatrix}
\Xi_{11} \\
\Xi_{21} \\
\Xi_{22} \\
\Xi_{23} \\
\Xi_{24} \\
\Xi_{25} \\
\Xi_{31} \\
\Xi_{32} \\
\Xi_{33} \\
\Xi_{34} \\
\Xi_{35} \\
\Xi_{41} \\
\Xi_{42} \\
\Xi_{43} \\
\Xi_{44} \\
\Xi_{45} \\
\end{bmatrix} < 0
\]

and desired filter can be constructed by:

\[
\begin{bmatrix}
A_{fil} & B_{fil} \\
C_{fil} & D_{fil} \\
\end{bmatrix} = \begin{bmatrix}
T_{22d} A_{fil} & T_{22d} B_{fil} \\
C_{fil} & D_{fil} \\
\end{bmatrix}
\]

(30)

Proof: By using lemma 2 and introducing matrices \(M_{id}, M_{2id}, T_i \) inequality (29) is equivalent to

\[
\Xi = \begin{bmatrix}
d_n \phi_{il}^T M_{1id} & \bar{d} \phi_{il}^T M_{2id} & \phi_{il}^T M_{1id} & \phi_{il}^T T_{id} \\
Z_{10} - M_{id} - M_{id}^T & \phi_{il}^T M_{2id} & \phi_{il}^T M_{1id} & \phi_{il}^T T_{id} \\
* & Z_{20} - M_{2id} - M_{2id}^T & \phi_{il}^T M_{1id} & \phi_{il}^T T_{id} \\
* & * & -I & \phi_{il}^T T_{id} \\
* & * & * & \phi_{il}^T T_{id} \\
\end{bmatrix} < 0
\]
Majlesi Journal of Electrical Engineering

considering

\[
P_q = \begin{bmatrix} P_{1st} & P_{2nd} & P_{3rd} \\ \ast & P_{2sp} & P_{3sp} \end{bmatrix}, \quad T_q = \begin{bmatrix} T_{1st} & T_{2nd} & T_{3rd} \\ \ast & T_{2sp} & T_{3sp} \end{bmatrix}, \quad \text{one}
\]
can obtain inequality (29). The proof is complete.

3. SIMULATION RESULTS

Consider following discrete-time switched fuzzy system consisting of two subsystems:

\[
A_1 = \begin{bmatrix} 0.2 & -0.1 \\ 0 & 0.4 \end{bmatrix}, \quad A_{d11} = \begin{bmatrix} 0.1 & 0 \\ 0.1 & 0.3 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0.2 \\ 0.1 \end{bmatrix}
\]

\[
E_{11} = \begin{bmatrix} 0.1 \\ 0.3 \end{bmatrix}, \quad G_{11} = \begin{bmatrix} 1.3 & 1.6 \\ 0.1 & 0 \end{bmatrix}, \quad C_{11} = \begin{bmatrix} 0.1 & 0 \end{bmatrix}, \quad C_{d11} = \begin{bmatrix} 0.1 & 0 \end{bmatrix}
\]

\[
\bar{R}_{11} = \begin{bmatrix} 0.007 \\ 0.1 \end{bmatrix}, \quad \bar{C}_{111} = \begin{bmatrix} 0.1 & 0.01 \end{bmatrix}, \quad \bar{C}_{121} = \begin{bmatrix} 0.01 & 0.01 \end{bmatrix}
\]

\[
\bar{C}_{131} = 0.01, \quad D_{11} = 1.1, \quad J_{11} = 1.14, \quad Q_{11} = 1, \quad J_1 = 0.5, \quad \xi_1 = 0.5
\]

\[
A_2 = \begin{bmatrix} 0.4 & 0.1 \\ 0.1 & 0.3 \end{bmatrix}, \quad A_{d22} = \begin{bmatrix} 0.1 & 0 \\ 0.2 & 0.1 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0.2 \\ 0.6 \end{bmatrix}
\]

\[
E_{22} = \begin{bmatrix} 0.3 \\ 0.2 \end{bmatrix}, \quad G_{22} = \begin{bmatrix} 1.5 & 1.2 \\ 0.1 & 0 \end{bmatrix}, \quad C_{22} = \begin{bmatrix} 0.1 & 0 \end{bmatrix}, \quad C_{d22} = \begin{bmatrix} 0.1 & 0 \end{bmatrix}
\]

\[
\bar{R}_{22} = \begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix}, \quad \bar{C}_{212} = \begin{bmatrix} 0.1 & 0.1 \end{bmatrix}, \quad \bar{C}_{222} = \begin{bmatrix} 0.1 & 0.1 \end{bmatrix}
\]

\[
\bar{C}_{312} = 0.1, \quad D_{21} = 0.1, \quad J_{21} = 1.5, \quad Q_{21} = 1.1, \quad \xi_2 = 0.5
\]

\[
A_3 = \begin{bmatrix} 0.1 & -0.1 \\ 0 & 0.4 \end{bmatrix}, \quad A_{d31} = \begin{bmatrix} 0.15 & 0 \\ 0.1 & 0.3 \end{bmatrix}, \quad B_{21} = \begin{bmatrix} 0.2 \\ 0.05 \end{bmatrix}
\]

\[
E_{31} = \begin{bmatrix} 0.1 \\ 0.4 \end{bmatrix}, \quad G_{31} = \begin{bmatrix} 1.3 & 1.5 \\ 0.2 & 0 \end{bmatrix}, \quad C_{31} = \begin{bmatrix} 0.2 & 0 \end{bmatrix}, \quad C_{d31} = \begin{bmatrix} 0 & 0.2 \end{bmatrix}
\]

\[
\bar{R}_{31} = \begin{bmatrix} 0.03 \\ 0.2 \end{bmatrix}, \quad \bar{C}_{311} = \begin{bmatrix} 0.2 & 0.04 \end{bmatrix}, \quad \bar{C}_{321} = \begin{bmatrix} 0.03 & 0.03 \end{bmatrix}
\]

\[
\bar{C}_{331} = 0.02, \quad D_{31} = 0.9, \quad J_{31} = 1.6, \quad Q_{31} = 0.9, \quad \xi_3 = 0.5
\]

The weighted matrix of the faults is considered as \(W_f(z) = 0.5z/(z-0.5) \) with the minimal realization \(A_0 = 0.5, \quad B_0 = 0.25, \quad C_0 = 1, \quad D_0 = 0.5 \) and the time-varying delay satisfying \(2 \leq d(k) \leq 4 \). Then we have \(d^* = 3 \). Assuming \(a = 0.05, \quad \mu = 1.05 \) yields \(T^* = (\ln \mu / \ln(1-a)) = 0.9512 \). Choosing \(T_a = 2 \), then \(\beta = 0.9866 < 1 \). For \(\gamma = 2.4 \) by solving (35) filter matrices are as follows:

\[
A_{f1} = \begin{bmatrix} 0.0042 & -0.0077 \\ -0.008 & 0.0101 \end{bmatrix}, \quad B_{f1} = \begin{bmatrix} 0.00008 \\ -0.00075 \end{bmatrix}
\]

\[
C_{f1} = \begin{bmatrix} -0.039 & 0.0087 \end{bmatrix}, \quad D_{f1} = 0.1609
\]

\[
A_{f2} = \begin{bmatrix} 0.0033 & -0.0013 \\ -0.0013 & 0.0009 \end{bmatrix}, \quad B_{f2} = \begin{bmatrix} -0.0089 \\ 0.0042 \end{bmatrix}
\]

\[
C_{f2} = \begin{bmatrix} -0.0757 & 0.0156 \end{bmatrix}, \quad D_{f2} = 0.2179
\]

\[
A_{f3} = \begin{bmatrix} 0.0023 & -0.0555 \\ -0.0059 & 0.0086 \end{bmatrix}, \quad B_{f3} = \begin{bmatrix} -0.003 \\ -0.009 \end{bmatrix}
\]

\[
C_{f3} = \begin{bmatrix} -0.0747 & 0.0256 \end{bmatrix}, \quad D_{f3} = 0.1858
\]

\[
A_{f4} = \begin{bmatrix} 0.0014 & -0.001 \\ -0.001 & 0.0021 \end{bmatrix}, \quad B_{f4} = \begin{bmatrix} -0.0001 \\ -0.0129 \end{bmatrix}
\]

\[
C_{f4} = \begin{bmatrix} -0.1392 & 0.1001 \end{bmatrix}, \quad D_{f4} = 0.1474
\]

To illustrate the effectiveness of the design, an unknown input is assumed to be \(d_k = 0.01 \exp(-0.04k) \cos(0.03\pi k) \). The control input \(u_k \) is the unit step signal. It is assumed that two faults in different times affects each subsystems as shown in Figure 1. The switching signal is demonstrated in Figure 2. States of first subsystem, second subsystem and overall system are shown respectively in Figures 3, 4 and 5.
It is easy to verify that in the interval of fault occurrence, state variables are deviated and with the end of interval, they return to their initial values. Also, disturbance is eliminated in a large extent.

4. CONCLUSION
In this paper, the robust state estimation filter design problem for uncertain switched fuzzy systems with time-varying state-delays has been studied. Then using H_{∞} filtering, switched Lyapunov functional and an average dwell time approach a delay dependent sufficient condition for solvability of this problem has been obtained in terms of LMIs, and filter matrices has been obtained. An illustrative example verified the effectiveness of the method to preserve stability of the system even in the presence of the faults.

REFERENCES